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The Cell as an Information 
Processing Device

LeDuc et al. Towards an in 
vivo biologically inspired 
nanofactory. Nature (2007) 
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•The Cell senses the environment and its own 
internal states
•Makes Plans, Takes Decisions and Act
•Evolution is the master programmer

The Cell as an Intelligent (Evolved) 
Machine

Cell

Internal States

Environmental Inputs

Actions

Wikimedia Commons
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Amir Mitchell, et al., Adaptive prediction of 
environmental changes by microorganisms. 
Nature June 2009.
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Transcription Networks

Gene1 Gene2 Gene3 Genek
Genome

Transcription Factors

Signal2 Signal5Signal1 Signal3 Signal4 Signaln...Environment
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The Basic Unit: A Gene’s Transcription Regulation Mechanics
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Network Motifs: Evolution’s Preferred Circuits
•Biological networks are complex and vast
•To understand their functionality in a scalable way one must choose 
the correct abstraction

•Moreover, these patterns are organised in non-trivial/non-random 
hierarchies

•Each network motif carries out a specific information-
processing function

10

“Patterns that occur in the real network significantly more 
often than in randomized networks are called network 
motifs” Shai S. Shen-Orr et al., Network motifs in the transcriptional regulation network of 

Escherichia coli. Nature Genetics  31, 64 - 68 (2002) 

Radu Dobrin et al., Aggregation of topological motifs in the Escherichia coli 
transcriptional regulatory network. BMC Bioinformatics. 2004; 5: 10. 
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Y positively 
regulates X

Negative 
autoregulation

Positive 
autoregulation

Negative autoregulation

Simple regulation

Positive autoregulation

U. Alon. Network motifs: theory and experimental approaches. Nature Reviews Genetics (2007) vol. 8 (6) pp. 450-461

X



/6712

Shai S. Shen-Orr et al., Network motifs in the transcriptional regulation network of 
Escherichia coli. Nature Genetics  31, 64 - 68 (2002) 

A general transcription factor 
regulating a second TF, called 
specific TF, such that both 
regulate effector operon Z.

In a coherent FFL, the direct 
effect of the general 
transcription factor (X)  has 
the same sign (+/-) than the 
indirect net effect through Y in 
the effector operon.

If the arrow from X to Z has 
different sign than the internal 
ones then the loop is an 
incoherent FFL
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most common
in E. Coli & S. 
Cerevisiae

The C1-FFL is a ‘sign-sensitive 
delay’ element and a persistence 
detector.

The I1-FFL is a pulse generator 
and response accelerator

U. Alon. Network motifs: theory and experimental approaches. Nature Reviews Genetics (2007) vol. 8 (6) pp. 450-461



/6714

The C1-FFL is a ‘sign-sensitive delay’ element and a persistence detector.

If the integration function is “OR” (rather than “AND”), C1-FFL has no 
delay after stimulation by Sx but, instead, manifests the delay when the 
stimulation stops.

U. Alon. Network motifs: theory and experimental approaches. Nature Reviews Genetics (2007) vol. 8 (6) pp. 450-461
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The I1-FFL is a pulse 
generator and 
response accelerator

U. Alon. Network motifs: theory and experimental 
approaches. Nature Reviews Genetics (2007) vol. 8 
(6) pp. 450-461
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Shai S. Shen-Orr et al., Network motifs in the transcriptional regulation network of 
Escherichia coli. Nature Genetics  31, 64 - 68 (2002) 

SIM is defined by one TF controlling a set 
of operons, with the same signs and no 
additional control.

TFs in SIMs are mostly negative 
autoregulatory (70% in E. coli)

U. Alon. Network motifs: theory and experimental approaches. Nature 
Reviews Genetics (2007) vol. 8 (6) pp. 450-461

 As the activity of the 
master regulator X 
changes in time, it 
crosses the different 
activation threshold of 
the genes in the  SIM 
at different times, this 
prioritizing the 
activation of the 
operons
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Shai S. Shen-Orr et al., Network motifs in the transcriptional regulation network of 
Escherichia coli. Nature Genetics  31, 64 - 68 (2002) 

DORs are layers of dense 
sets of TFs affecting multiple 
operons.

To understand the specific 
function of these “gate-arrays” 
one needs to know the input 
functions (AND/OR) for each 
output gene. This data is not 
currently available in most 
cases.
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Shai S. Shen-Orr et al., Network motifs in the transcriptional 
regulation network of Escherichia coli. Nature Genetics  31, 
64 - 68 (2002) 

•The correct abstract ions 
facilitates understanding in 
complex systems.

•Provide a route to engineering 
& programming cells.
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P Systems

•Field of membrane computing initiated by 
Gheorghe Păun in 2000

•Inspired by the hierarchical membrane 
structure of eukaryotic cells

•A formal language: precisely defined and 
machine processable

•An executable biology methodology

20
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Functional Entities
Container

• A boundary defining self/non-self (symmetry breaking).
• Maintain concentration gradients and avoid environmental damage.

Metabolism

• Confining raw materials to be processed.
• Maintenance of internal structures (autopoiesis).

Information

• Sensing environmental signals / release of signals.
• Genetic information

21
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Distributed and parallel rewritting systems in 
compartmentalised hierarchical structures.

Compartments

Objects

Rewriting Rules

• Computational universality and efficiency.

• Modelling Framework

22
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Cell-like P systems

• a string of matching parentheses:    [1 [2 ]2 [3 ]3 [4 [5 ]5 [6 [8 ]8 [9 ]9 ]6 

[7 ]7 ]4 ]1

1

2
3

4

7
5

8

6

9

formally equivalent to a tree:

the classic P system diagram appearing in most papers 
(Păun)

Intuitive Visual representation 
as a Venn diagram with a 
unique superset and without 
intersected sets.

23
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P-Systems: Modelling Principles
Molecules
Structured Molecules

Letters
Strings

Molecular Species Multisets of letters/strings

Membranes /
organelles

Membrane

Biochemical activity rules

Biochemical transport Communication rules

24
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Stochastic P Systems

25
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Rewriting Rules

used by Multi-volume Gillespie’s algorithm

26
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Molecular Species
l A molecular species can be represented using  

individual objects.

l A molecular species with relevant internal structure 
can be represented using a string.

27
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Molecular Interactions
l Comprehensive and relevant rule-based schema 

for the most common molecular interactions taking 
place in living cells.

                         Transformation/Degradation
                         Complex Formation and Dissociation
                         Diffusion in / out
                         Binding and Debinding
                         Recruitment and Releasing
                         Transcription Factor Binding/Debinding
                         Transcription/Translation

28
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Compartments / Cells 
l Compartments and regions are explicitly 

specified using membrane structures.

29
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a b

a b

Symport channel
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a

b
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Antiport channel

a
b

a b

Promoted symport channel (trap)

c

30

Transport 
Modalities
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1

5

4 3

2

Endocitosys

Pinocitosys

Phagocitosys

Exocitosys

31

Transport Modalities
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Highly specific:
cell specific & topology specific

32

Transport Modalities



/67

Colonies / Tissues
l Colonies and tissues are representing as 

collection of P systems distributed over a lattice.

l Objects can travel around the lattice through 
translocation rules.

v

33



/67

Molecular Interactions 
Inside Compartments

34
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Passive Diffusion of Molecules

35
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Signal Sensing and 
Active Transport

36
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Specification of Transcriptional 
Regulatory Networks 

37
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Post-Transcriptional Processes
l For each protein in the system, post-transcriptional processes like 

translational initiation, messenger and protein degradation, protein 
dimerisation, signal sensing, signal diffusion etc are represented using 
modules of rules.

l Modules can have also as parameters the stochastic kinetic constants 
associated with the corresponding rules in order to allow us to explore 
possible mutations in the promoters and ribosome binding sites in order to 
optimise the behaviour of the system.

38
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Scalability through Modularity

Cellular functions arise from orchestrated 
interactions between motifs consisting of 
many molecular interacting species.

A P System model is a set of rules 
representing molecular interactions motifs that 
appear in many cellular systems.

F. J. Romero-Campero, J. Twycross, M. Camara, M. Bennett, M. Gheorghe, and N. Krasnogor. Modular assembly of cell 
systems biology models using p systems. International Journal of Foundations of Computer Science, 20(3):427-442, 2009.

39
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Basic P System Modules Used 

40



/6721

Characterisation/Encapsulation of 
Cellular Parts: Gene Promoters

q A modeling language for 
the design of  synthetic 
bacterial colonies. 

q A module, set of rules 
describing the molecular 
interactions  involving a 
cellular part, provides 
encapsulation and 
abstraction.
 
q Collection or libraries of 
reusable cellular parts and 
reusable models.  

LuxR
AHL

CI

PluxOR1({X},{c1, c2, c3, c4, c5, c6, c7, c8, c9},{l}) = {

     type:  promoter

     sequence:  ACCTGTAGGATCGTACAGGTTTACGCAAGAA
     ATGGTTTGTATAGTCGAATACCTCTGGCGGTGATA

     rules:
         r1(c1): [ LuxR2 + PluxPR.X ] => [ PluxPR.LuxR2.X ]
         r2(c2): [ PluxPR.LuxR2.X ] => [ LuxR2 + PluxPR.X ] 
                                              ...
         r5(c5): [ CI2 + PluxPR.X ] => [ PluxPR.CI2.X ]
         r6(c6): [ PluxPR.CI2.X ] => [ CI2 + PluxPR.X ]
                                              ...
         r9(c9): [ PluxPR.LuxR2.X ] => [ PluxPR.LuxR2.X + RNAP.X ]
}

E. Davidson (2006) The Regulatory Genome, Gene Regulation Networks in 
Development and Evolution, Elsevier

41
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Module Variables: Recombinant 
DNA, Directed Evolution, Chassis 

selection

A

q Directed evolution: Variables for stochastic constants can be instantiated with specific 
values.

q Recombinant DNA: Objects variables can be instantiated with the name of specific 
genes.

PluxOR1({X=tetR})PluxOR1({X=GFP})

PluxOR1({X=GFP},{...,c4=10,...})
q Chassis Selection: The variable for the label can be instantiated with  the name of a 

chassis.

PluxOR1({X=GFP},{...,c4=10,...},{l=DH5α })

42
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Characterisation/Encapsulation of 
Cellular Parts: Riboswitches

q A riboswitch is a piece of RNA that folds in different ways depending on the 
presence or absence of specific molecules regulating translation.

ToppRibo({X},{c1, c2, c3, c4, c5, c6},{l}) = {

     type:  riboswitch

    sequence:GGTGATACCAGCATCGTCTTGATGCCCTTGG
                     CAGCACCCCGCTGCAAGACAACAAGATG
     rules:
         r1(c1): [ RNAP.ToppRibo.X ] => [ ToppRibo.X ] 
         r2(c2): [ ToppRibo.X  ] => [  ]
         r3(c3): [ ToppRibo.X + theop ] => [ ToppRibo*.X ]
         r4(c4): [ ToppRibo*.X ] => [ ToppRibo.X + theop ] 
         r5(c5): [ ToppRibo*.X ] => [ ]
         r6(c6): [ ToppRibo*.X ] => [ToppRibo*.X + Rib.X ]
}

43
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Characterisation/Encapsulation of 
Cellular Parts: Degradation Tags

q Degradation tags are amino acid sequences recognised by proteases. Once the 
corresponding DNA sequence is fused to a gene the half life of the protein is 
reduced considerably. 

degLVA({X},{c1, c2},{l}) = {

    type:  degradation tag

    sequence: CAGCAAACGACGAAAACTACGCTTTAGTAGCT

    rules:
         r1(c1): [ Rib.X.degLVA ] => [ X.degLVA ]
         r2(c2): [ X.degLVA  ] => [  ]
}

44
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Higher Order Modules: Building 
Synthetic Gene Circuits

PluxOR1                                        geneXToppRibo degLVA

3OC6_repressible_sensor({X})  = {
        PluxOR1({X=ToppRibo.geneX.degLVA},{...},{l=DH5α})
        ToppRibo({X=geneX.degLVA},{...},{l=DH5α})
        degLVA({X},{...},{l=DH5α})
}

X=GFP

 Plux({X=ToppRibo.geneCI.degLVA},{...},{l=DH5α})
 ToppRibo({X=geneCI.degLVA},{...},{l=DH5α})
 degLVA({CI},{...},{l=DH5α})

  PtetR({X=ToppRibo.geneLuxR.degLVA},{...},{l=DH5α})
  Weiss_RBS({X=LuxR},{...},{l=DH5α})
   Deg({X=LuxR},{...},{l=DH5α})

45



/67

Stochastic P Systems Are 
Executable  Programs

The virtual machine running these programs is a “Gillespie 
Algorithm (SSA)”. It generates trajectories of a stochastic system:

A stochastic constant is associated with each rule.
A propensity is computed for each rule by multiplying the 
stochastic constant by the number of distinct possible 
combinations of the elements on the left hand side of the rule.

F. J. Romero-Campero, J. Twycross, M. Camara, M. Bennett, M. Gheorghe, and N. Krasnogor. 
Modular assembly of cell systems biology models using p systems. International Journal of 
Foundations of Computer Science, 2009
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Multicompartmental Gillespie 
Algorithm 

1

2

3 r1
1,…,r1

n1

       M1

r2
1,…,r2

n2

         M2

r3
1,…,r3

n3

           M3

( 1, τ1, r0
1)

( 2, τ2, r0
2)

( 3, τ3, r0
3)

( 2, τ2, r0
2)

( 1, τ1, r0
1)

( 3, τ3, r0
3)

Sort Compartments
      τ2  < τ1 < τ3

Local Gillespie

( 1, τ1-τ2, r0
1)

( 3, τ3-τ2, r0
3)

Update Waiting Times
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 τ1-τ2 <τ2’ < τ3-τ2

‘
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• Two different bacterial strains carrying specific synthetic 
gene regulatory networks are used. 

• The first strain produces a diffusible signal AHL.

• The second strain possesses a synthetic gene regulatory 
network which produces a pulse of GFP after AHL sensing 
within a range of values (Band Pass).
                                                                           

An example: A Pulse Generator

S. Basu, R. Mehreja, et al. (2004) Spatiotemporal control of gene expression with pulse generating networks, PNAS, 
101, 6355-6360

49
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Sender Cells

Pconst

LuxI AHL

AHL

SenderCell()=

{

 Pconst({X = luxI },…)

 PostTransc({X=LuxI},{c1=3.2,…})

 Diff({X=AHL},{c=0.1})

}

luxI

50
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luxR
Pconst

cIPlux

gfp
PluxOR1

LuxR

CI

GFP
AHL

AHL

PulseGenerator()=

{

 Pconst({X=luxR},…)

 PluxOR1({X=gfp},…)

 Plux({X=cI},…)

   …

              …

 Diff({X=AHL},…)

}

Pulse Generating Cells

51
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Spatial Distribution of Senders 
   and Pulse Generators

luxIPconst

LuxI AHL

AHL

AHL

luxR
Pconst

cI
Plux

gfp
PluxOR1

LuxR

CI

GFP
AHL

AHL

52
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Pulse propagation - simulation I

Simulation I

53

PulseGenerator2.htm
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Pulse Generating Cells 
With Relay

luxR
Pconst

cIPlux

PluxOR1

LuxR

CI

AHL

AHL

luxI
Plux

LuxI

AHL

PulseGenerator(X ) = 

{ 
   Pconst({X=luxR},…)

   PluxOR1({X},…) ,

   Plux({X=cI},…) ,

          …

    Diff({X=AHL},…) ,

    Plux({X=luxI},…) 

}
54
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Simulation II

Pulse propagation & Rely- 
simulation II

55

PulseGenerator3.htm
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A Signal Translator
for Pattern Formation

act1
Prep2

act2
Prep1

rep1
Pact1

rep2
Pact2

rep3
Prep1

rep4
Prep2

I2
Prep3

I1
Prep4

FP2
Pact2

FP1Pact1
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Alternating signal pulses in 
synthetic bacterial colonies

luxR
Pconst

cI
Plux

gfp
PluxOR1

LuxR GFP
Si

Si

luxI

LuxI

Si

Plux CI

57
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Alternating signal pulses in 
synthetic bacterial colonies

Simulation III

58

AlternatingPulses.htm
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Uniform Spatial Distribution of 
Signal Translators for Pattern Formation

59
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Turing Patterns in Bacterial Colonies

60
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In	Silico	&	In	Vivo
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• Living cells as stochastic & asynchronous bio-processors that adapt 
and generate their own hardware on-demand

• Information processing is organised via interconnected networks 
(genes, signaling, metabolic, etc)

• P systems are a handy way of specifying discrete and stochastic rule-
based compartmental models for cellular computation.

• Modularity in P systems as a design principle for synthetic networks 
that enables reusability, hierarchical abstraction and standardisation.

 
• Automated explorations (evolutionary search) on models’ structure 

and parameters.

• Computer Aided analysis of modular and alternative designs (e.g. 
synthetic network functionality). 

TAKE HOME MESSAGE
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Any Questions?
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